

Agriculture and Natural Resources

Calibrating Stationary Big Gun Sprinklers for Manure Applications

Karl VanDevender Extension Agricultural Engineer

Phil Tacker Extension Agricultural Engineer

John Langston Extension Agricultural Engineer

Importance of Calibration

You can avoid the potential adverse effect on ground and surface water caused by over fertilization by applying only the amount of waste and wastewater necessary to maintain soil fertility for crop production.

The calibration of liquid manure spreading equipment is important because it lets you know the amount of waste and wastewater you are applying to an area.

The calibration rate and the nutrient concentration level of the liquid manure lets you know the amount of plant nutrients you are applying. Then, you can adjust your fertilization rate to avoid over fertilization.

Calibration

The wastewater application rate from a stationary big gun sprinkler depends on the flow rate, coverage diameter, the amount of time it operates at a location, and the sprinkler location pattern. To attain acceptable application uniformity with multiple sprinkler setups the sprinkler spacing should be 70 to 85 percent of the sprinkler's coverage diameter (see Figure 1). The necessary steps to calibrate stationary big gun sprinklers are given in the example below.

1) Determine flow rate in gallons per minute (GPM) from available manufacturer's literature or **Table 1**.

Example: From Table 1: 0.75" nozzle at 90 PSI has a flow rate of 155 GPM

Your Numbers: _____ nozzle at _____ PSI has a flow rate of _____ GPM

2) Determine the coverage diameter (DIA) in feet from available manufacturer's literature or **Table 1**.

Example: From Table 1: 0.75["] nozzle at 90 PSI has a 306 ft coverage diameter (DIA)

Your Numbers: _____ nozzle at _____ PSI has a _____ ft coverage diameter (DIA)

3) Calculate the needed sprinkler spacing (SS) as 70 to 85% of the coverage diameter (DIA) from **Step 2**. Refer to **Figure 1** for a diagram of a stationary gun setup.

Example: <u>306</u> ft x <u>77</u>% ÷ 100 = <u>236</u> ft sprinkler spacing (SS); use <u>230 to 240</u> ft

Your Numbers: _____ ft x ____% \div 100 = _____ ft sprinkler spacing (SS); use ______ ft

Arkansas Is Our Campus

Visit our web site at: http://www.uaex.edu

4) To calculate the average application rate (in/hr), multiply 96 by the GPM from Step 1 then divide by the Step 3 sprinkler spacing (SS) twice.									
Example:	96 x <u>155</u> GPM ÷ <u>236 ft</u> SS ÷ <u>236 ft</u> SS = <u>0.27</u> in/hr								
Your Numbers:	96 x GPM ÷ SS ÷ SS = in/hr								
5) To determine the inches of wastewater to apply for a given N rate, divide the desired number of pounds of N per acre by the number of pounds of N in a 1000 gallons of wastewater ¹ . Then divide the result by 27 to get the inches of wastewater.									
Example:	<u>150</u> lb N/ac ÷ <u>5</u> lb N/1000 gal ÷ 27 = <u>1.1</u> in								
Your Numbers:	lb N/ac ÷ lb N/1000 gal ÷ 27 = in								
6) To determine the number of hours to operate the sprinkler at each location divide the inches of wastewater from Step 5 by the application rate from Step 4 .									
Example:	<u>1.1</u> in \div <u>0.27</u> in/hr = <u>4</u> hr								
Your Numbers:	in ÷ in/hr = hr								
	OR								
5) To determine the inches of wastewater that were applied multiply the application rate from Step 4 by the number of hours the sprinkler operated at a location.									
Example:	<u>0.27</u> in/hr x <u>4</u> hrs = <u>1.1</u> in								
Your Numbers:	in/hr x hrs = in								
6) The N applied per acre (lb N/ac) is calculated by multiplying the inches of wastewater applied from Step 5 by the pounds of N in a 1000 gallons of wastewater and then multiply this result by 27.									
Example:	<u>1.1</u> in x <u>5</u> lb N/1000 gal x 27 = <u>150</u> lb N/ac								
Your Numbers:	in x lb N/1000 gal x 27 = lb N/ac								

¹Refer to the University of Arkansas Extension publications Liquid Animal Waste Sampling (FSA 3006) and Understanding Your Animal Waste Nutrient Analysis (FSA 3008) for information on having your liquid manure analyzed and interpreting the analysis.

	Nozzle 0.5"		Nozzle 0.5″ Nozzle 0.75″		Nozzle 1"		Nozzle 1.25"		Nozzle 1.5"		Nozzle 1.75"		Nozzle 2"	
PSI	GPM	DIA	GPM	DIA	GPM	DIA	GPM	DIA	GPM	DIA	GPM	DIA	GPM	DIA
50	50	205	115	256	204	300	325	353						
60	55	215	126	270	224	316	358	373	515	430	695	470	912	512
70	60	225	136	283	243	338	385	388	555	450	755	495	980	528
80	64	235	146	295	258	354	413	403	590	470	805	515	1047	548
90	68	245	155	306	274	362	440	418	625	485	855	535	1105	568
100	72	255	163	316	289	372	463	430	660	500	900	550	1167	592
110	76	265	171	324	304	380	485	440	695	515	945	565	1220	607
120									725	530	985	580	1277	622
130									755	540	1025	590	1333	640

Table 1. General Flow Rates and Coverage Diameters for Big Gun Sprinklers. Nozzle size is in inches. Flow rate is in gallons/minute (GPM). Operating pressure is in pounds/square inch (PSI). Coverage diameter (DIA) is in feet (ft).

NOTE: If your exact numbers are not in the table, then estimate your value based on the numbers nearest yours.

Figure 1. Typical Stationary Gun Layout

ANGELA RIECK, former assistant specialist - waste management, is co-author of this publication.

DR. KARL VANDEVENDER, PHIL TACKER and **JOHN LANGSTON** are Extension agricultural engineers, Cooperative Extension Service, University of Arkansas, Little Rock. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Director, Cooperative Extension Service, University of Arkansas. The Arkansas Cooperative Extension Service offers its programs to all eligible persons regardless of race, color, national origin, sex, age, or disability, and is an Equal Opportunity Employer.